skip to main content


Search for: All records

Creators/Authors contains: "Pryer, Kathleen M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Premise

    Despite the economic significance of insect damage to plants (i.e., herbivory), long‐term data documenting changes in herbivory are limited. Millions of pressed plant specimens are now available online and can be used to collect big data on plant–insect interactions during the Anthropocene.

    Methods

    We initiated development of machine learning methods to automate extraction of herbivory data from herbarium specimens by training an insect damage detector and a damage type classifier on two distantly related plant species (Quercus bicolorandOnoclea sensibilis). We experimented with (1) classifying six types of herbivory and two control categories of undamaged leaf, and (2) detecting two of the damage categories for which several hundred annotations were available.

    Results

    Damage detection results were mixed, with a mean average precision of 45% in the simultaneous detection and classification of two types of damage. However, damage classification on hand‐drawn boxes identified the correct type of herbivory 81.5% of the time in eight categories. The damage classifier was accurate for categories with 100 or more test samples.

    Discussion

    These tools are a promising first step for the automation of herbivory data collection. We describe ongoing efforts to increase the accuracy of these models, allowing researchers to extract similar data and apply them to biological hypotheses.

     
    more » « less
  4. Abstract

    Phytochromes initiate chloroplast biogenesis by activating genes encoding the photosynthetic apparatus, including photosynthesis-associated plastid-encoded genes (PhAPGs).PhAPGs are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in the nucleus activate chloroplast gene expression remains enigmatic. We report here a forward genetic screen inArabidopsisthat identified NUCLEAR CONTROL OF PEP ACTIVITY (NCP) as a necessary component of phytochrome signaling forPhAPGactivation. NCP is dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the assembly of the PEP complex forPhAPGtranscription. NCP and its paralog RCB are non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant functions in phytochrome signaling. These results support a model in which phytochromes controlPhAPGexpression through light-dependent double nuclear and plastidial switches that are linked by evolutionarily conserved and dual-localized regulatory proteins.

     
    more » « less